
mando Documentation
Release 0.2

Michele Lacchia

Jun 18, 2023

Contents

1 The problem 3

2 The solution 5

3 Contents 9
3.1 Usage . 9

4 Indices and tables 17

i

ii

mando Documentation, Release 0.2

mando is a wrapper around argparse, allowing you to write complete CLI applications in seconds while maintaining
all the flexibility.

Contents 1

mando Documentation, Release 0.2

2 Contents

CHAPTER 1

The problem

argparse is great for single-command applications, which only have some options and one, default command.
Unfortunately, when more commands are added, the code grows too much along with its complexity.

3

mando Documentation, Release 0.2

4 Chapter 1. The problem

CHAPTER 2

The solution

mando makes an attempt to simplify this. Since commands are nothing but functions, mando simply provides a couple
of decorators and the job is done. mando tries to infer as much as possible, in order to allow you to write just the code
that is strictly necessary.

This example should showcase most of mando’s features:

gnu.py
from mando import main, command, arg

@arg('maxdepth', metavar='<levels>')
def find(path, pattern, maxdepth: int = None, P=False, D=None):

'''Mock some features of the GNU find command.

This is not at all a complete program, but a simple representation to
showcase mando's coolest features.

:param path: The starting path.
:param pattern: The pattern to look for.
:param -d, --maxdepth: Descend at most <levels>.
:param -P: Do not follow symlinks.
:param -D <debug-opt>: Debug option, print diagnostic information.'''

if maxdepth is not None and maxdepth < 2:
print('If you choose maxdepth, at least set it > 1')

if P:
print('Following symlinks...')

print('Debug options: {0}'.format(D))
print('Starting search with pattern: {0}'.format(pattern))
print('No file found!')

if __name__ == '__main__':
main()

5

mando Documentation, Release 0.2

mando extracts information from your command’s signature and docstring, so you can document your code and create
the CLI application at once! In the above example the Sphinx format is used, but mando does not force you to write
ReST docstrings. Currently, it supports the following styles:

• Sphinx (the default one)

• Google

• Numpy

To see how to specify the docstring format, see Other Docstring Formats.

The first paragraph is taken to generate the command’s help. The remaining part (after removing all :param:’s)
is the description. For everything that does not fit in the docstring, mando provides the @arg decorator, to override
arbitrary arguments before they get passed to argparse.

$ python gnu.py -h
usage: gnu.py [-h] {find} ...

positional arguments:
{find}
find Mock some features of the GNU find command.

optional arguments:
-h, --help show this help message and exit

$ python gnu.py find -h
usage: gnu.py find [-h] [-d <levels>] [-P] [-D <debug-opt>] path pattern

This is not at all a complete program, but a simple representation to showcase
mando's coolest features.

positional arguments:
path The starting path.
pattern The pattern to look for.

optional arguments:
-h, --help show this help message and exit
-d <levels>, --maxdepth <levels>

Descend at most <levels>.
-P Do not follow symlinks.
-D <debug-opt> Debug option, print diagnostic information.

As you can see the short options and metavars have been passed to argparse. Now let’s check the program itself:

$ python gnu.py find . "*.py"
Debug options: None
Starting search with pattern: *.py
No file found!
$ python gnu.py find . "*.py" -P
Following symlinks...
Debug options: None
Starting search with pattern: *.py
No file found!
$ python gnu.py find . "*" -P -D dbg
Following symlinks...
Debug options: dbg
Starting search with pattern: *
No file found!

(continues on next page)

6 Chapter 2. The solution

mando Documentation, Release 0.2

(continued from previous page)

$ python gnu.py find . "*" -P -D "dbg,follow,trace"
Following symlinks...
Debug options: dbg,follow,trace
Starting search with pattern: *
No file found!

$ python gnu.py find -d 1 . "*.pyc"
If you choose maxdepth, at least set it > 1
Debug options: None
Starting search with pattern: *.pyc
No file found!
$ python gnu.py find --maxdepth 0 . "*.pyc"
If you choose maxdepth, at least set it > 1
Debug options: None
Starting search with pattern: *.pyc
No file found!
$ python gnu.py find --maxdepth 4 . "*.pyc"
Debug options: None
Starting search with pattern: *.pyc
No file found!

$ python gnu.py find --maxdepth 4 .
usage: gnu.py find [-h] [-d <levels>] [-P] [-D <debug-opt>] path pattern
gnu.py find: error: too few arguments
$ python gnu.py find -d "four" . filename
usage: gnu.py find [-h] [-d <levels>] [-P] [-D <debug-opt>] path pattern
gnu.py find: error: argument maxlevels: invalid int value: 'four'

7

mando Documentation, Release 0.2

8 Chapter 2. The solution

CHAPTER 3

Contents

3.1 Usage

3.1.1 Defining commands

A command is a function decorated with @command. mando tries to extract as much as information as possible from
the function’s docstring and its signature.

The paragraph of the docstring is the command’s help. For optimal results it shouldn’t be longer than one line. The
second paragraph contains the command’s description, which can be as long as needed. If only one paragraph is
present, it is used for both the help and the description. You can document the parameters with the common Sphinx’s
:param:: syntax.

For example, this program generates the following helps:

from mando import command, main

@command
def cmd(foo, bar):

'''Here stands the help.

And here the description of this useless command.

:param foo: Well, the first arg.
:param bar: Obviously the second arg. Nonsense.'''

print(arg, bar)

if __name__ == '__main__':
main()

9

mando Documentation, Release 0.2

$ python command.py -h
usage: command.py [-h] {cmd} ...

positional arguments:
{cmd}
cmd Here stands the help.

optional arguments:
-h, --help show this help message and exit

$ python command.py cmd -h
usage: command.py cmd [-h] foo bar

And here the description of this useless command.

positional arguments:
foo Well, the first arg.
bar Obviously the second arg. Nonsense.

optional arguments:
-h, --help show this help message and exit

3.1.2 Long and short options (flags)

You can specify short options in the docstring as well, with the :param: syntax. The recognized formats are these:

• :param -O: Option help

• :param --option: Option help

• :param -o, --output: Option help

Example:

from mando import command, main

@command
def ex(foo, b=None, spam=None):

'''Nothing interesting.

:param foo: Bla bla.
:param -b: A little flag.
:param -s, --spam: Spam spam spam spam.'''

print(foo, b, spam)

if __name__ == '__main__':
main()

Usage:

$ python short_options.py ex -h
usage: short_options.py ex [-h] [-b B] [-s SPAM] foo

Nothing interesting.

positional arguments:

(continues on next page)

10 Chapter 3. Contents

mando Documentation, Release 0.2

(continued from previous page)

foo Bla bla.

optional arguments:
-h, --help show this help message and exit
-b B A little flag.
-s SPAM, --spam SPAM Spam spam spam spam.

$ python short_options.py ex 2
('2', None, None)
$ python short_options.py ex 2 -b 8
('2', '8', None)
$ python short_options.py ex 2 -b 8 -s 9
('2', '8', '9')
$ python short_options.py ex 2 -b 8 --spam 9
('2', '8', '9')

3.1.3 How default arguments are handled

If an argument has a default, then mando takes it as an optional argument, while those which do not have a default are
interpreted as positional arguments. Here are the actions taken by mando when a default argument is encountered:

Default argument type What mando specifies in add_argument()
bool action store_true or store_false is added
list action append is added.
int type int() is added.
float type float() is added.
str type str() is added.

So, for example, if a default argument is an integer, mando will automatically convert command line arguments to
int():

from mando import command, main

@command
def po(a=2, b=3):

print(a ** b)

if __name__ == '__main__':
main()

$ python default_args.py po -h
usage: default_args.py po [-h] [-a A] [-b B]

optional arguments:
-h, --help show this help message and exit
-a A
-b B

$ python default_args.py po -a 4 -b 9
262144

Note that passing the arguments positionally does not work, because argparse expects optional args and a and b
are already filled with defaults:

3.1. Usage 11

mando Documentation, Release 0.2

$ python default_args.py po
8
$ python default_args.py po 9 8
usage: default_args.py [-h] {po} ...
default_args.py: error: unrecognized arguments: 9 8

To overcome this, mando allows you to specify positional arguments’ types in the docstring, as explained in the next
section.

3.1.4 Adding type and metavar in the docstring

This is especially useful for positional arguments, but it is usually used for all type of arguments. The notation is this:
:param {opt-name} <type>: Help. <type> must be a built-in type among the following:

• <i>, <int>, <integer> to cast to int();

• also <n>, <num>, <number> to cast to int();

• <s>, <str>, <string> to cast to str();

• <f>, <float> to cast to float().

mando also adds <type> as a metavar. Actual usage:

from mando import command, main

@command
def pow(a, b, mod=None):

'''Mimic Python's pow() function.

:param a <float>: The base.
:param b <float>: The exponent.
:param -m, --mod <int>: Modulus.'''

if mod is not None:
print((a ** b) % mod)

else:
print(a ** b)

if __name__ == '__main__':
main()

$ python types.py pow -h
usage: types.py pow [-h] [-m <int>] a b

Mimic Python's pow() function.

positional arguments:
a The base.
b The exponent.

optional arguments:
-h, --help show this help message and exit
-m <int>, --mod <int>

Modulus.

(continues on next page)

12 Chapter 3. Contents

mando Documentation, Release 0.2

(continued from previous page)

$ python types.py pow 5 8
390625.0
$ python types.py pow 4.5 8.3
264036.437449
$ python types.py pow 5 8 -m 8
1.0

3.1.5 Adding type in the signature

If running Python 3, mando can use type annotations to convert argument types. Since type annotations can be any
callable, this allows more flexibility than the hard-coded list of types permitted by the docstring method:

from mando import command, main

Note: don't actually do this.
def double_int(n):

return int(n) * 2

@command
def dup(string, times: double_int):

"""
Duplicate text.

:param string: The text to duplicate.
:param times: How many times to duplicate.
"""
print(string * times)

if __name__ == "__main__":
main()

$ python3 test.py dup "test " 2
test test test test
$ python3 test.py dup "test " foo
usage: test.py dup [-h] string times
test.py dup: error: argument times: invalid double_int value: 'foo'

3.1.6 Overriding arguments with @arg

You may need to specify some argument to argparse, and it is not possible to include in the docstring. mando provides
the @arg decorator to accomplish this. Its signature is as follows: @arg(arg_name, *args, **kwargs),
where arg_name must be among the function’s arguments, while the remaining arguments will be directly passed to
argparse.add_argument(). Note that this decorator will override other arguments that mando inferred either
from the defaults or from the docstring.

3.1.7 @command Arguments

There are three special arguments to the @command() decorator to allow for special processing for the
decorated function. The first argument, also available as keyword name='alias_name' will allow

3.1. Usage 13

mando Documentation, Release 0.2

for an alias of the command. The second argument, also available as keyword doctype='rest' al-
lows for Numpy or Google formatted docstrings to be used. The third is only available as keyword
formatter_class='argparse_formatter_class' to format the display of the docstring.

Aliasing Commands

A common use-case for this is represented by a function with underscores in it. Usually commands have dashes
instead. So, you may specify the aliasing name to the @command() decorator, this way:

@command('very-powerful-cmd')
def very_powerful_cmd(arg, verbose=False):

pass

And call it as follows:

$ python prog.py very-powerful-cmd 2 --verbose

Note that the original name will be discarded and won’t be usable.

Other Docstring Formats

There are three commonly accepted formats for docstrings. The Sphinx docstring, and the mando dialect of Sphinx
described in this documentation are treated equally and is the default documentation style named rest for REStruc-
tured Text. The other two available styles are numpy and google. This allows projects that use mando, but already
have docstrings in these other formats not to have to convert the docstrings.

An example of using a Numpy formatted docstring in mando:

@command(doctype='numpy')
def simple_numpy_docstring(arg1, arg2="string"):

'''One line summary.

Extended description.

Parameters

arg1 : int

Description of `arg1`
arg2 : str

Description of `arg2`

Returns

str

Description of return value.
'''
return int(arg1) * arg2

An example of using a Google formatted docstring in mando:

@program.command(doctype='google')
def simple_google_docstring(arg1, arg2="string"):

'''One line summary.

Extended description.

(continues on next page)

14 Chapter 3. Contents

mando Documentation, Release 0.2

(continued from previous page)

Args:
arg1(int): Description of `arg1`
arg2(str): Description of `arg2`

Returns:
str: Description of return value.

'''
return int(arg1) * arg2

Formatter Class

For the help display there is the opportunity to use special formatters. Any argparse compatible formatter class can be
used. There is an alternative formatter class available with mando that will display on ANSI terminals.

The ANSI formatter class has to be imported from mando and used as follows:

from mando.rst_text_formatter import RSTHelpFormatter

@command(formatter_class=RSTHelpFormatter)
def pow(a, b, mod=None):

'''Mimic Python's pow() function.

:param a <float>: The base.
:param b <float>: The exponent.
:param -m, --mod <int>: Modulus.'''

if mod is not None:
print((a ** b) % mod)

else:
print(a ** b)

3.1.8 Shell autocompletion

Mando supports autocompletion via the optional dependency argcomplete. If that package is installed, mando
detects it automatically without the need to do anything else.

3.1. Usage 15

mando Documentation, Release 0.2

16 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

	The problem
	The solution
	Contents
	Usage

	Indices and tables

